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Resources: https://github.com/pliang279/awesome-multimodal-ml

https://github.com/pliang279/awesome-multimodal-ml
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Large benchmarks for multimodal affect recognition

Multimodal Benchmarks
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Liang et al., Computational Modeling of Human Multimodal Language. Master’s Thesis 2018



Large benchmarks for multimodal affect recognition

1,000 speakers 250 topics

Multimodal Benchmarks
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Diverse annotations

Liang et al., Computational Modeling of Human Multimodal Language. Master’s Thesis 2018



Multiscale Benchmarks for Multimodal Learning
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Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021 Benchmark Track



Multiscale Benchmarks for Multimodal Learning
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Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021 Benchmark Track

Standardized implementation of >20 multimodal methods



Methods struggle to perform outside of their own domain

Multiscale Benchmarks for Multimodal Learning

Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021 Benchmark Track
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Strong tradeoffs between performance and complexity

Multiscale Benchmarks for Multimodal Learning

Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021 Benchmark Track
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Strong tradeoffs between performance and robustness

Multiscale Benchmarks for Multimodal Learning

Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021 Benchmark Track
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accuracy as noise increases rate of accuracy drops



Improving robustness to noisy modalities via low-rank tensors

Imperfection -> higher rank Regularizing rank -> more robust

Robust Multimodal Learning

Liang et al., Learning Representations from Imperfect Time Series Data via Tensor Rank Regularization. ACL 2019
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reconstruction

prediction

prior

Factorized representation learning

Robust Multimodal Learning

Tsai*, Liang* et al., Learning Factorized Multimodal Representations. ICLR 2019
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Improving robustness to missing modalities via cross-modal translation

Bimodal Cyclic Translations
Joint Representation Visual Modality

Today was a great day!
Language Modality forward

backward

forward

backward

Sentiment Prediction

Only language modality required at test time!

Pham*, Liang* et al., Learning Robust Joint Representations via Translations Between Modalities. AAAI 2019

Robust Multimodal Learning
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Social Biases in Sentence Embeddings
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Liang et al., Towards Debiasing Sentence Representations. ACL 2020



bias attribute words contextualization encode

estimate bias subspacebias representations

R1: male R2: female

neutralize

Social Biases in Sentence Embeddings

Liang et al., Towards Debiasing Sentence Representations. ACL 2020
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Social Biases in Language Models

20

Examples from Sheng et al., (2020)

Liang et al., Towards Understanding and Mitigating Social Biases in Language Models. ICML 2021



Social Biases in Language Models
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Top-K tokens
Projection onto 
bias subspace

Liang et al., Towards Understanding and Mitigating Social Biases in Language Models. ICML 2021



Applications in Healthcare
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Daily mood prediction as a stepping-stone towards real-time assessment of suicide ideation. 



Real-time assessment

Decentralized multimodal mobile device data

Aggregate

Centralized training

Privacy-preserving representation learning

Applications in Healthcare
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Data challenges
Multimodal data sources + highly heterogeneous user data
Typed text

Privacy challenges
Data privacy: does the data itself stay safe and secure
Feature privacy: do the learned features encode private information

Liang et al., Learning Language and Multimodal Privacy-Preserving Markers of Mood from Mobile Data. ACL 2021



Real-time assessment

Decentralized multimodal mobile device data

Aggregate

Centralized training

Privacy-preserving representation learning

Privacy-preserving Learning
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Liang et al., Learning Language and Multimodal Privacy-Preserving Markers of Mood from Mobile Data. ACL 2021
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