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1 Introduction

As intelligent systems increasingly blend into our everyday lives, building Al systems that display social intelligence has
become one of the next grand challenges in the field. Socially intelligent AI should comprehend human social cues, intents,
and affective states, engage in social conversation, and understand social norms and commonsense in order to maintain a rich
level of interpersonal interaction with humans. Social intelligence is currently a defining trait uniquely natural to humans.
In everyday social interactions, we convey our intentions through a coordinated structure of multimodal signals: language
(words, phrases, and sentences), visual (gestures and expressions), and acoustic (paralinguistics and changes in vocal tones).
While AT has shown tremendous promise in solving various tasks, designing social Al with the capability to communicate
the same way humans do, by incorporating all involved modalities, is a fundamental research challenge.

My research builds towards real-world social Al that understands and engages in human communication, thereby narrowing
the gap in computers’ understanding of humans and opening new horizons for the creation of socially intelligent entities.
The creation of social Al would bring about real-world advances in human sensing and robot design, with the end goal of
engaging people through social and physical interactions [14], monitoring human behavior to understand and predict the
types of help people need [8, 10], and offering assistance in schools, hospitals, and the workplace [12]. While prior research
towards social intelligence has made impressive strides in affective computing and dialog systems, my research further
focuses on bridging the gap towards real-world deployment. I strongly believe that real-world social Al has the capability to
democratize access to important human-centric areas such as healthcare and education [12, 16]. Therefore, my vision focuses
on ensuring the accessibility of such models so that no social group will be at a disadvantage when deployed, particularly
underrepresented groups [17]. As steps towards real-world social Al I have outlined three major milestones:
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Figure 1: My research towards real-world social
Al involves 1) multimodal perception of human
communication, 2) modeling the interactive loop
between multimodal perception and action, and 3)
ensuring robustness, fairness, and interpretability
in real-world applications.

2. Interactive social intelligence: Step two involves modeling the
interactive loop between social perception and action - both commu-
nicating with humans through multimodal behaviors and acting in
an embodied environment. This interactive loop between listening and
responding to social behaviors happens over a long-term horizon.

3. Towards real-world social intelligence: Closing the gap towards
real-world deployment via 1) robust learning in the face of noisy and missing modalities, 2) fair representation learning
from human-centric data, and 3) interpretable modeling of social commonsense.

My Ph.D. research aims to take a major step towards real-world social AL I am tremendously dedicated to my research vision
and have made significant contributions towards multimodal perception and robustness. This fellowship will enable me to
push my research vision further towards more interactive and fair social Al. From a broader perspective, the outcome of
my research will also present fundamental theoretical and practical insights in multimodal learning, allowing researchers
to design models that capture the benefits of multimodal data sources and deploy them in the real world. In the following
sections, I describe my existing research and outline directions for future work.

2 Multimodal Perception of Human Communication

From a computational perspective, the modeling of human communication across both verbal and nonverbal behaviors
focuses on tasks such as multimodal sentiment analysis [18], emotion recognition [3], and personality traits recognition [20].
To comprehend human communication, there is a need for 1) large multimodal resources with diversity in training samples,
topics, speakers, and annotations, as well as 2) powerful models for multimodal communication. I have made significant
open-source contributions in these areas.



Language:  And he I don't think he got mad when hah
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Figure 2: I have worked towards addressing the lack of multimodal resources by collecting and releasing the largest dataset
of multimodal sentiment and emotion recognition with diversity in training samples, topics, speakers, and annotations,
thereby enabling generalizable studies of human communication.
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2.1 Multimodal Communication Resources

2.1.1 Preliminary work in multimodal resources: I have worked towards addressing the lack of multimodal resources by
collecting and releasing the largest dataset of multimodal sentiment and emotion recognition enabling gener-
alizable studies of human communication (see Figure 2). CMU-MOSEI contains 23,500 annotated video segments from
1,000 distinct speakers and 250 topics. The diversity in topics, speakers, annotations, and modalities allows for generalizable
studies of speaker and topic-independent features. The multimodal dataset and a general multimodal data loading framework
are provided to the scientific community to encourage valuable research in human communication analysis. This work
culminated in an oral presentation at ACL 2018 [24] and was also the bulk of my master’s thesis at CMU [9]. Since then, the
dataset has also been the subject of two workshop challenges in modeling human multimodal language at ACL 2018 and
ACL 2020, and has been a standard benchmark dataset for the multimodal machine learning community.

2.2 Multimodal Communication Modeling

My research has substantially improved the state-of-the-art in human communication modeling. These approaches have
also contributed to core technical algorithms for multimodal learning from heterogeneous data and have been used by the
broader research community for applications in conversational agents [19], depression detection [1], face alignment [6],
personalized recommendation [23], and medical image segmentation [5].

2.2.1 Preliminary work in multimodal representation learning: My research has contributed to better understandings of
the desiderata for multimodal representations beyond discriminative performance [22]. I proposed an approach
based on factorizing multimodal representations into multimodal discriminative and modality-specific generative factors.
The discriminative factor learns joint features across modalities that achieve state-of-the-art performance for affect analysis.
At the same time, the modality-specific generative factors enable controllable generation of human language based on
individual factors, better model partially missing modalities, and allow analysis of local contributions from each modality
during prediction, desiderata previously unachievable via purely discriminative approaches.

2.2.2 Preliminary work in multimodal modeling: I have made contributions towards data and compute-efficient mul-
timodal learning via simple yet strong models [11]. These models are based on stronger statistical baselines rather
than black-box neural networks. Our approach assumes a fully-factorized probabilistic generative model of multimodal
data from a latent representation. Careful model design allows us to capture expressive unimodal, bimodal, and trimodal
interactions while at the same time retaining simplicity and efficiency during learning and inference. These models show
strong performance on both supervised and semi-supervised multimodal prediction, as well as significant (10 times) speedups
over neural models during inference.

2.2.3 Preliminary work in multimodal affect analysis: I proposed a new perspective on human-centric affect analysis
by modeling both person-independent and person-dependent signals [10]. Some emotional expressions are almost
universal person-independent behaviors and can be recognized directly from a video. For example, an open mouth with
raised eyebrows and a loud voice is likely to be associated with surprise. However, emotions are also expressed in a
person-dependent fashion with idiosyncratic behaviors where it may not be possible to directly estimate absolute emotion
intensities. Instead, it would be easier to compare two video segments of the same person and judge whether there was a
relative change in emotion intensities. For example, a person could have naturally furrowed eyebrows and we should not
always interpret this as a display of anger, but rather compare two video segments to determine relative changes in anger. I
designed a model combining both signals to achieve state-of-the-art audio-visual emotion recognition performance and
allow for fine-grained investigation of person-independent and person-dependent behaviors.




3 Interactive Social Intelligence

One of my core research thrusts for the remaining duration of my PhD lies in modeling the long-term interactive loop
between social perception and action. After perceiving human communication, social Al agents should have the ability
to communicate through multimodal behaviors and act in an embodied environment. It remains a core technical challenge
to model the high-dimensional action spaces as well as generation quality of multimodal outputs.

3.0.1 Ongoing work in multimodal reinforcement learning: I am currently working on action abstractions in multimodal
reinforcement learning which will enable agents to communicate and act over long-term horizons. These envi-
ronments have large multimodal state and action spaces consisting of both actions as well as text from the environment or
dialog with other agents. This makes them especially challenging for existing RL algorithms since it is intractable to enumer-
ate over large action spaces. Action abstractions allow us to learn low-dimensional, semantically meaningful representations
which can then be decoded into raw high-dimensional actions. I aim to scale up action abstractions for challenging discrete
and continuous environments by appropriate design and optimization of a good latent action space.

’ Stage ‘ Agents ‘ Data collection ‘ Learning algorithm ‘ Evaluation metric ‘

1. Imitation Al Human demonstration Supervised learning Generation likelihood
Cumulative reward

2. Self-play Al with AI Simulated environment Reinforcement learning & Generation likelihood
3. Interacti Al with H Simulated environment Reinforcement learning Human judgement
- teraction With Human |- g Human-in-the-loop labeling & Active learning & Generation likelihood

Table 1: I envision a new standard of evaluation benchmarks that increasingly assess the realism of interactive social Al
across imitation, self-play, and interaction stages, each building on top of the previous stage. I also plan to collect more
realistic interactive benchmarks that better represent real-world social Al in dialogue, robotics, and healthcare.

3.0.2 Long-term goals in benchmarking interactive intelligence: Any Al model can only be as good as the metrics used to
evaluate it. Therefore, I plan to collect realistic interactive benchmarks to better evaluate real-world social Al
Existing benchmarks lack the component of interactivity and focus primarily on supervised tasks. Instead, I envision a new
series of evaluation microtasks that each specialize in a subset of social interactions. Each of these microtasks increasingly
assess the realism of social intelligence, categorized according to the agents involved, data collection process, learning
algorithms, and evaluation metrics as illustrated in Table 1. Stage 1, the imitation stage, tests whether Al is able to imitate
humans in social settings. Most of the existing work in supervised affect recognition and dialog modeling falls under this
category. Stage 2, the self-play stage, tests whether Al is able to interactively engage with itself. A core technical challenge
in this stage lies in tackling the problem of language drift where core knowledge of human language is forgotten and both
agents descend into language model regions of low likelihood [7]. Stage 3, the interactive stage, tests whether Al is able to
engage in interactive social communication with a real human. I aim to leverage human-in-the-loop learning and active
learning to provide useful human labels in an interactive multimodal setting. The culmination of these 3 stages will more
accurately benchmark the interactive capabilities of social Al and uncover the shortcomings of existing models.

To realize this long-term goal, I plan to first focus on a specific aspect of social interaction: multimodal dialog between a
human speaker and actor in a situated environment. Multimodal dialog is a good testbed due to the use of nonverbal gestures
in addition to language as well as references to the broader environment. However, current multimodal dialog datasets are
limited by size, modalities (it has been shown that models rely primarily on language), and actions (participants primarily talk
without performing actions in an environment). To mitigate these shortcomings, I plan to explore data-collection methods
that involve scripted situations with actors that engage nonverbal modalities beyond language and act in the environment.
Furthermore, I will also focus on better evaluation metrics for actions beyond those recorded in the dataset.

4 Towards Real-world Social Intelligence

To enable social Al technologies for real-world deployment, I have identified 3 core challenges that must be adequately
addressed: 1) robustness to noisy and missing modalities, 2) fair representation learning from human-centric data
and 3) interpretable modeling of social commonsense. I am also currently working towards real-world applications of
social Al in healthcare by tacking problems such as privacy-preserving learning from mobile data.

4.1 Robustness to Noisy and Missing Modalities

While social Al requires modeling of human communication, real-world multimodal data is often imperfect as a result of
missing entries, noise corruption, or missing modalities entirely. Human-centric data is also often imperfect due to personal



idiosyncrasies which affect the contribution of certain modalities during social interactions. For example, multimodal
dialogue systems trained on acted TV shows are susceptible to poor performance when deployed in the real world where
users might be less expressive in using facial gestures. This calls for robust models that can still make accurate predictions
despite only having access to a (possibly noisy) subset of signals.

4.1.1 Preliminary work in handling noisy modalities: I proposed a mathematically grounded tensor representation learn-
ing method to deal with noisy modalities in time-series data (e.g. text, videos, audio) [13]. This method is based on the
observation that multimodal time series data often exhibits correlations across time and modalities which lead to low-rank
multimodal representations. However, the presence of noise or incomplete values breaks these correlations and results in
tensor representations of higher rank. Regularizing the rank of tensor representations therefore provides a denoising effect
and our model achieves strong results across various levels of imperfection.

4.1.2 Preliminary work in handling missing modalities: I also investigated the
scenario where entire modalities may be missing during deployment [21]. Ex-
isting methods always learn a joint representation with all modalities as input,
making them susceptible when modalities are not all available. My method is
based on the insight that translation from a source to target modality learns
joint representations using only the source modality as input while extracting
information present in the target modality. This new paradigm of multi-
modal learning by translating between modalities requires only the
source modality at test time which ensures robustness to target modal-
ities. Experiments show robust performance in multimodal sentiment and
emotion analysis while requiring only language as the source, often comparable
to models operating on all 3 modalities (language, visual, and audio).

Multimodal
representation

Somal media

4.1.3 Long-term goals in achieving dynamic robustness: A challenge not ad-
dressed by previous work is scenarios where modalities are dynamically
missing and noisy over long-term social interactions. In this setting, the
imperfect modalities are unknown and dynamically change at different times
of model usage, which better represents real-world multimodal learning where
reliable data sources constantly change (see Figure 3). I plan to first collect

realistic interactive datasets that better represent real-world social Al with
imperfect modalities for multimodal dialogue, human-robot interaction, and
healthcare diagnosis. Tackling dynamic robustness over long signals also
carries several technical challenges involving temporal credit assignment, as-
sessing the utility of each modality, and formalizing the tradeoffs between
unimodal and multimodal learning in terms of performance and robustness
metrics (see section 4.2.3).

dynamically imperfect across time
Figure 3: Real-world multimodal learning
suffers when the imperfect modalities are
unknown and dynamically change at differ-
ent times of model usage. I plan to collect
realistic benchmarks with imperfect modal-
ities in dialogue, robotics, and healthcare

applications.
4.2 Fair Human-centric Multimodal Learning

To safely deploy human-centric social AI models in real-world scenarios such as healthcare, legal systems, and social
science, it is necessary to recognize the role they play in shaping social biases and stereotypes. Previous work has revealed
the presence of undesirable biases in word embeddings involving gender, race, and religion. Similarly, we must carefully
characterize these biases and design algorithms to mitigate biases for multimodal social Al models.

4.2.1 Preliminary work in debiasing sentence representations: While existing methods for debiasing word embeddings are
largely successful [2], there has been a shift from word embeddings to contextual sentence representations such as ELMo
and BERT. We are the first to investigate the presence of social biases in these sentence-level representations
and propose a new method, Sent-Debias, to mitigate these biases [15]. Representational biases are harmful biases
resulting from stereotyping that propagates negative generalizations about particular social groups. These are currently
measured using a set of word association tests between predefined social constructs (e.g. gender and racial terms) and
social professions (e.g. occupations, academic fields). Sent-Debias is based on contextualizing bias-attribute words (e.g. man,
woman) using a diverse set of sentence templates into bias-attribute sentences. Our experiments showed the importance
of 1) naturally-occurring sentence templates from large text corpora over simple templates, and 2) both the quality and
quantity of sentence templates used. Our method reduces bias effect size while retaining performance on sentiment analysis,
linguistic acceptability, and language understanding.




4.2.2 Ongoing work in debiasing general modalities: To quantify and Text space Joint space Image space
mitigate biases in social Al systems that learn from multimodal
experience, we must further contextualize bias-attribute words into
their corresponding entities in the target modalities by modeling the
highly complex relationships between modalities (see Figure 4). Further-
more, contextualization could introduce potential biases as well: standard
image retrieval models do discriminate against women and people of
color (e.g. given the word “scientist”, retrieving a higher proportion of
male than female images). I am working towards these directions to
effectively mitigate bias in modern Al technologies such as pretrained Figure 4: Learning a joint space across multi-
language models, cross-modal retrieval models, and human-centric pre- modal data allows us to accurately contextualize

diction models. words into their corresponding entities in the tar-
get modalities for bias estimation and removal.
It is also important to mitigate potential biases
during contextualization.

4.2.3 Long-term goals in formalizing tradeoffs in multimodal learning:
Existing approaches primarily optimize for prediction performance from
multimodal data sources without formally quantifying the tradeoffs
between improved performance and the potential drawbacks involving
increased time and space complexity of learning from another modality, risk of decreased robustness from imperfect
modalities, and risk of unfair learning from biased modalities. For example, training supervised models to predict human
affect from multimodal data can lead to an over-reliance on the most informative language modality, which makes these
models highly sensitive to language imperfections and social biases in language embeddings during testing. On the theoretical
side, my goal is to formally characterize the desiderata in multimodal representation learning balancing various
performance, complexity, robustness, and fairness metrics. At the same time, I also plan to empirically quantify these
trade-offs to determine the overall contribution of a modality given the potential drawbacks on a set of real-world multimodal
benchmarks spanning healthcare, robotics, and affective computing. Answering these questions will bridge the gap towards
real-world social Al that captures the benefits of multimodal data sources while accurately considering and mitigating the
potential risks involving robustness and fairness.

4.3 Interpretable Modeling of Social Commonsense

4.3.1 Long-term goals in building social commonsense: Social commonsense reflects a collective measure of self and social
awareness, evolved social beliefs and attitudes, and a general set of social norms governing everyday interactions. It is
challenging for Al to learn social commonsense directly from data since such basic knowledge is often not reflected in our
pursuit of increasingly complex real-world datasets. I aim to impart social commonsense into Al agents by designing
interpretable structures of social knowledge as priors for social Al The language of knowledge graphs allows for
interpretable modeling of social commonsense via a set of entities representing social behaviors and relations representing
social interactions. As an example, entities could represent individual behaviors such as the pitch of voice or the presence
of a smile, while relations would represent either actions from the same agent (smile followed by a nod) or actions from
one agent to another (saying a phrase and obtaining a response). Humans, via theory of mind, have strong psychological
priors of social commonsense and can accurately predict the result of engaging via one form of interaction given a currently
observed set of social behaviors. Similarly, in building social Al inference under a subset of entities and relations in such a
knowledge graph should result in a deduction of the social states resulting from executing those interactions given those
behaviors. An interpretable and realistic social knowledge prior would allow for 1) flexibility in defining the structured
knowledge present, 2) fine-grained analysis of a model’s decision-making process, and 3) commonsense facts to help in
modeling real-world social intelligence.

As steps towards this long-term vision, I plan to first focus on the simpler speaker-listener, non-interactive setting where a
human speaker conveys their beliefs and intentions via verbal and nonverbal behaviors to the listener. While such settings
are well studied through modeling human affective states, personalities, and cognitive states, existing research primarily
focuses on task-specific supervised approaches. As a result, they do not model interpretable knowledge priors of general
social commonsense. I aim to incrementally construct such knowledge via three stages: 1) injecting prior knowledge by
defining entities and relations inspired by research in modeling social intelligence from psychology and philosophy, 2) a
data-driven approach that leverages large banks of unlabeled single-speaker data and multimodal feature extractors, and 3)
integrating both classical and learned entities and relations. The resulting knowledge graph should represent the beliefs
of the listener as they infer traits displayed by the speaker. While predictive tasks such as emotion recognition might
primarily rely on additive signals, I am more interested in studying tasks involving sarcasm, humor, and deception where
information from modalities is often contradictory. I plan to evaluate whether social commonsense knowledge can improve
sample complexity, interpretability, and controllability beyond purely data-driven supervised methods. Relying partially on
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interpretable, predefined knowledge can also help in more robust and fair learning.

4.4 Real-world Applications

4.4.1 Ongoing work in learning markers of suicide from mobile data: Suicide is the second leading cause of death among
adolescents, with 16% of high school students reporting seriously considering suicide each year, and 8% making one or more
suicide attempts [4]. As a step towards adaptive interventions of suicidal behaviors, intensive monitoring of behavior via
adolescents’ use of smartphones may shed new light on the early risk of suicidal thoughts and behaviors. While smartphones
provide a valuable data source, one must take care to summarize behaviors from mobile data without identifying the user
through personal (e.g., personally identifiable information) or protected attributes (e.g., race, gender). As part of my broader
research in real-world social Al, I am currently designing algorithms to learn multimodal privacy-preserving markers
of suicidal thoughts and behaviors from mobile data, with the modalities spanning indicators of emotional distress
(acoustic voice data, communicative language, facial expression, and music choice), social dysfunction (content and patterns
of online communication, geographic movement), and sleep disturbance (actigraphy, light sensors, and diurnal patterns
of phone use). I have made progress in fair and computationally-efficient federated learning algorithms for decentralized
multimodal device data [12, 16]. My current goal is to achieve a balance between predictive performance of STBs and
protecting the privacy of personal and protected attributes.

5 Conclusion

Long-term vision: I believe that social Al can democratize access in areas of beneficial social impact such as improving the
quality of healthcare and maximizing the accessibility of education. Therefore, I envision a world with synergy between
humans and Al connected via social interaction, where intelligent robots can engage with humans and offer assistance in
schools, hospitals, and the workplace. My vision of accessible Al also leads me to focus on ensuring the robustness and
fairness of such models so that no social group will be at a disadvantage when deployed. While this is an ambitious goal, I
believe that my expertise in multimodal learning and close collaboration with wonderfully gifted researchers in academia
and industry places me in a perfect position to execute this research plan.
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